Extensions 1→N→G→Q→1 with N=C23 and Q=C3⋊Dic3

Direct product G=N×Q with N=C23 and Q=C3⋊Dic3
dρLabelID
C23×C3⋊Dic3288C2^3xC3:Dic3288,1016

Semidirect products G=N:Q with N=C23 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C23⋊(C3⋊Dic3) = C2×C6.7S4φ: C3⋊Dic3/C6S3 ⊆ Aut C2372C2^3:(C3:Dic3)288,916
C232(C3⋊Dic3) = C62.38D4φ: C3⋊Dic3/C32C4 ⊆ Aut C2372C2^3:2(C3:Dic3)288,309
C233(C3⋊Dic3) = C2×C625C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C23144C2^3:3(C3:Dic3)288,809

Non-split extensions G=N.Q with N=C23 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C23.(C3⋊Dic3) = C12.12S4φ: C3⋊Dic3/C6S3 ⊆ Aut C23726C2^3.(C3:Dic3)288,402
C23.2(C3⋊Dic3) = (C6×D4).S3φ: C3⋊Dic3/C32C4 ⊆ Aut C2372C2^3.2(C3:Dic3)288,308
C23.3(C3⋊Dic3) = C627C8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C23144C2^3.3(C3:Dic3)288,305
C23.4(C3⋊Dic3) = C2×C12.58D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C23144C2^3.4(C3:Dic3)288,778
C23.5(C3⋊Dic3) = C22×C324C8central extension (φ=1)288C2^3.5(C3:Dic3)288,777

׿
×
𝔽